n conclusion, accurate measurement of facial movement is essential to all clinicians involved in facial paralysis rehabilitation. To advance the field in such a niche subspecialty, it is essential that outcomes are reported uniformly. In addition to the creation of a “global” database, standardization of smile analysis would further this goal. To achieve widespread acceptance, the system needs to be simple, intuitive, and inexpensive. It must be reproducible across different international centers, and requires strong interrater and intrarater correlation. We believe the SMILE system is valid and satisfies these criteria. To our knowledge, it is the only smile analysis technique that permits remote measurement of digitally transmitted photographs. This development alone represents an improvement for patients, who often travel long distances for review of smile excursion, and for surgeons, who can now analyze smile outcome without the patient physically present. It also provides a useful tool for retrospective photographic facial analysis. Comparing preoperative to postoperative change in measured parameters from rest to smile may be the most useful determinant of successful facial reanimation surgery.

Dominic Bray, MD, FRCS(ORL-NHS)
Douglas K. Henstrom, MD
Mack L. Cheney, MD
Tessa A. Hadlock, MD

Author Affiliations: Department of Otolaryngology—Head and Neck Surgery, Guy’s Hospital, London, England (Dr Bray); and Facial Nerve Center, Department of Otolaryngology—Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Boston (Drs Henstrom, Cheney, and Hadlock).

Correspondence: Dr Hadlock, Facial Nerve Center, Department of Otolaryngology—Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, 243 Charles St, Boston, MA 02114 (tessa_hadlock@meei.harvard.edu).

Financial Disclosure: None reported.

The Bow-Tie Mattress Suture for the Correction of Nasal Cartilage Convexities and Concavities

Aesthetic medicine continues to evolve toward less invasive procedures with equal or superior results. While the current economic conditions have had some influence in the recent rise of minimally invasive cosmetic procedures and the decline in surgical procedures, they are likely not the sole cause. The popularity of minimally invasive surgery cannot be de-
ned, because many patients prefer the minimal morbid-
ity and favorable results associated with less invasive pro-
cedures. While much of aesthetic medicine is evolving
toward less invasive procedures, rhinoplasty, in con-
trast, has evolved over the past 2 decades into a bigger
procedure, performed primarily by 1 method and with
extensive grafting. The emphasis placed on grafting is
partially to control crooked or deviating nasal carti-
lages. And while outcomes include straight, strong, well-
built noses, results may take months to years to be re-
alized. We describe a modification of the mattress suture
for straightening a curved convex or concave cartilage
segment as well as supporting the nasal tip, middle vault,
and nasal valves while decreasing the need for harvest-
ing cartilage, further reducing morbidity.

Traditional techniques to correct cartilaginous cur-
vatures include strutting grafts, sutures, and nasal scor-
ing, all of which have been reported with success yet come
with specific limitations. Scoring weakens cartilage and
can result in future collapse. Splinting strut grafts are very
successful but may require significant donor site mate-
rial, frequently necessitating extranasal sources of carti-
lage. In addition, excess grafting can lead to a larger nose,
and, although the nose may be straightened and well sup-
ported, its appearance may not be as aesthetically ap-
pealing.

Suture techniques to alter nasal tip cartilage position
and attitude have been described since Joseph. McCollough and English, Tardy and Cheng, and Tardy et al have previously illuminated the benefits mattress suturing can have for controlling the nasal tip. Gruber et al described in detail the surgical technique for straightening a cartilaginous convexity with mattress suturing. Cadaver studies on variable-thickness cartilage helped to further define appropriate distances between the suture purchases. While the mattress suture is a primary tool for controlling nasal cartilage positioning, a slight modification in design has resulted in a more predictible and effective outcome in our hands.

Methods. The modification of the mattress suture in-
volves a suture crossed over in a bow-tie manner. A 5-0
polydioxanone (PDS) mattress suture (Ethicon, Somer-
ville, New Jersey) is used; however, instead of the inser-
tion and exit points of the suture being in the same plane
as with a typical mattress suture, the second insertion entrance and exit points are reversed (Figure 1). While maintaining the distance between the parallel pur-
ches consistent with the previous recommendations of
6 to 8 mm or 7 to 10 mm is dependent on cartilage thick-
ness, the apex of the cartilage convexity is crossed over
by the suture. This places the focal point of tension directly over the cartilage convexity, driving the deviated segment straight (Figure 2).
Effect of Perioperative Hyperbaric Oxygen on Bruising in Face-lifts

Hyperbaric oxygen (HBO) therapy has been used for wound healing for many years. It increases the ability of blood to upload, carry, and deliver oxygen to tissue. The mechanism by which oxygen acts on wound beds is multifactorial, but includes improved oxygen delivery to relatively hypoxic and avascular tissue and increases free radical scavengers to prevent and reduce oxidative stress and tissue injury. The final common pathway for wounds treated with HBO therapy is improved and more rapid wound healing.

Wound healing is a primary interest of both patients and the collective health care industry. Physicians modify surgical techniques, pharmaceutical companies spend millions of dollars on research and development, and patients use anecdotal home remedies in their care to facilitate a more rapid recovery. One of the most challenging aspects in evaluation of wound healing has been developing an inexpensive, easy-to-use, objective measure to assess outcomes. Subtle variability between photographs may be imperceptible to even the most trained eye, resulting in inaccuracies when grading outcomes.

Seeley et al developed digital photographic analysis of ecchymosis of the skin flaps of patients who undergo face-lift procedures using nonsurgical internal skin controls to reduce intraobserver variability.

 methods. Thirteen patients were entered into the study from the senior author’s practice (A.A.J.). All 13 patients were offered the opportunity to participate in the treatment arm. Informed consent was obtained from the 6 patients choosing to undergo HBO therapy. Drains and dressings were removed on postoperative day (POD) 1. All patients received routine postoperative care, which includes oral steroids, prophylactic antibiotics, the botanical Arnica montana, and bromalain. The treatment group received 5 perioperative HBO treatments at 2 atmospheres for 60 minutes administered on the 2 days prior to surgery and then again on PODs 3, 4, and 5. Standard digital photography was taken on PODs 1, 5, 7, and 10 for digital analysis.

Each photograph underwent digital analysis using Adobe Photoshop (Adobe Systems Inc, San Jose, California) in the CMYK (cyan, magenta, yellow, and black; see Seeley et al for a detailed description) color mode from the image drop-down menu with the internal control of normal skin and the surgically treated cheek soft tissue evaluated.

The CMYK color mode was used as previously described by Seeley et al, providing information on the difference between the internal control area and the cheek soft-tissue flap to assess 5 different characteristics: cyan, magenta, yellow, black, and luminosity. The control area was taken in order of preference from the earlobe skin, temple skin, nasal skin, and cervical skin to compare an area that was uninvolved in the surgical field and is most similar to the cheek soft tissues. The cheek flap was independently evaluated (Figure 1).

Following collection of both the control and cheek soft-tissue data, color change was objectively quantified with a previously validated formula,

\[x = \left(\Delta C^2 + \Delta Y^2 + \Delta M^2 + \Delta K^2 + \Delta L^2 \right)^{1/2} \]

in which \(x \) represents the difference in the individual characteristic between the study area and the internal control area for comparison.